Robust tensor factorization using R1 norm
نویسندگان
چکیده
Over the years, many tensor based algorithms, e.g. two dimensional principle component analysis (2DPCA), two dimensional singular value decomposition (2DSVD), high order SVD, have been proposed for the study of high dimensional data in a large variety of computer vision applications. An intrinsic limitation of previous tensor reduction methods is the sensitivity to the presence of outliers, because they minimize the sum of squares errors (L2 norm). In this paper, we propose a novel robust tensor factorization method usingR1 norm for error accumulation function using robust covariance matrices, allowing the method to be efficiently implemented instead of resorting to quadratic programming software packages as in other L1 norm approaches. Experimental results on face representation and reconstruction show that our new robust tensor factorization method can effectively handle outliers compared to previous tensor based PCA methods.
منابع مشابه
A General Model for Robust Tensor Factorization with Unknown Noise
Because of the limitations of matrix factorization, such as losing spatial structure information, the concept of low-rank tensor factorization (LRTF) has been applied for the recovery of a low dimensional subspace from high dimensional visual data. The low-rank tensor recovery is generally achieved by minimizing the loss function between the observed data and the factorization representation. T...
متن کاملMaking Tensor Factorizations Robust to Non-Gaussian Noise∗
Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization has found application in many different domains. The CP model is typically fit using a least squares objective function, which is a maximum likelihood estimate under the assumption of i.i.d. Gaussian noise. We demonstrate that this loss function can actually be highly sensitive to non-Gaussian noise. Therefore, we...
متن کاملFast Tensor Principal Component Analysis via Proximal Alternating Direction Method with Vectorized Technique
This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix m n × ∈ X , the time...
متن کاملRobust Tensor Clustering with Non-Greedy Maximization
Tensors are increasingly common in several areas such as data mining, computer graphics, and computer vision. Tensor clustering is a fundamental tool for data analysis and pattern discovery. However, there usually exist outlying data points in realworld datasets, which will reduce the performance of clustering. This motivates us to develop a tensor clustering algorithm that is robust to the out...
متن کاملArens-irregularity of tensor product of Banach algebras
We introduce Banach algebras arising from tensor norms. By these Banach algebras we make Arensregular Banach algebras such that tensor product becomes irregular, where is tensor norm. Weillustrate injective tensor product, does not preserve bounded approximate identity and it is notalgebra norm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008